English
Show full menu

Information

The equal temperament

The tuning or temperament of a scale is the way the frequencies of the notes are chosen. In Western music the equal temperament is most popular. Other temperaments are for example: the just intonation, the Pythagorean tuning, the mean tone temperament, the well temperament and the 31 equal temperament.

An octave is divided into 12 'proportionally increasing' distances. The ratio of the frequencies of two successive semitones is always the same (approximately 1.0594631). Because of this, all intervals (second, third, fourth, fifth, sixth, seventh), except the octave, deviate from the just tuning. They cause beating. All equally named intervals sound equally false (they beat). The advantage of this tuning is that it remains the same when switched to another tone type (a number of semitones higher or lower), and it is therefore not needed to tune the instrument differently.

Below an overview is given of the intervals and the differences of the equal and the just temperament. The just temperament is the way to construct a scale where the frequency ratios are simple integers. This produces music which is experienced as pure (not false).
Interval
Equal
Just
Unison
1.000
1.000
1/1
0.0%
Minor second
1.059
1.067
16/15
-0.7%
Major second
1.122
1.125
9/8
-0.2%
Minor third
1.189
1.200
6/5
-0.9%
Major third
1.260
1.250
5/4
+0.8%
Fourth
1.335
1.333
4/3
+0.1%
Augmented fourth
1.414
1.400
7/5
+1.0%
Fifth
1.498
1.500
3/2
-0.1%
Minor sixth
1.587
1.600
8/5
-0.8%
Major sixth
1.682
1.667
5/3
+0.9%
Minor seventh
1.782
1.778
16/9
+0.2%
Major seventh
1.888
1.875
15/8
+0.7%
Octave
2.000
2.000
2/1
0.0%

Frequency table of the notes

#
Tone
Octave
Frequency (Hz)
0
C
0
16.3516
1
C#
0
17.3239
2
D
0
18.3540
3
D#
0
19.4454
4
E
0
20.6017
5
F
0
21.8268
6
F#
0
23.1247
7
G
0
24.4997
8
G#
0
25.9565
9
A
0
27.5000
10
A#
0
29.1352
11
B
0
30.8677
#
Tone
Octave
Frequency (Hz)
12
C
1
32.7032
13
C#
1
34.6478
14
D
1
36.7081
15
D#
1
38.8909
16
E
1
41.2034
17
F
1
43.6535
18
F#
1
46.2493
19
G
1
48.9994
20
G#
1
51.9131
21
A
1
55.0000
22
A#
1
58.2705
23
B
1
61.7354

#
Tone
Octave
Frequency (Hz)
24
C
2
65.4064
25
C#
2
69.2957
26
D
2
73.4162
27
D#
2
77.7817
28
E
2
82.4069
29
F
2
87.3071
30
F#
2
92.4986
31
G
2
97.9989
32
G#
2
103.8262
33
A
2
110.0000
34
A#
2
116.5409
35
B
2
123.4708
#
Tone
Octave
Frequency (Hz)
36
C
3
130.8128
37
C#
3
138.5913
38
D
3
146.8324
39
D#
3
155.5635
40
E
3
164.8138
41
F
3
174.6141
42
F#
3
184.9972
43
G
3
195.9977
44
G#
3
207.6523
45
A
3
220.0000
46
A#
3
233.0819
47
B
3
246.9417

#
Tone
Octave
Frequency (Hz)
48
C
4
261.6256
49
C#
4
277.1826
50
D
4
293.6648
51
D#
4
311.1270
52
E
4
329.6276
53
F
4
349.2282
54
F#
4
369.9944
55
G
4
391.9954
56
G#
4
415.3047
57
A
4
440.0000
58
A#
4
466.1638
59
B
4
493.8833
#
Tone
Octave
Frequency (Hz)
60
C
5
523.2511
61
C#
5
554.3653
62
D
5
587.3295
63
D#
5
622.2540
64
E
5
659.2551
65
F
5
698.4565
66
F#
5
739.9888
67
G
5
783.9909
68
G#
5
830.6094
69
A
5
880.0000
70
A#
5
932.3275
71
B
5
987.7666

#
Tone
Octave
Frequency (Hz)
72
C
6
1,046.5023
73
C#
6
1,108.7305
74
D
6
1,174.6591
75
D#
6
1,244.5079
76
E
6
1,318.5102
77
F
6
1,396.9129
78
F#
6
1,479.9777
79
G
6
1,567.9817
80
G#
6
1,661.2188
81
A
6
1,760.0000
82
A#
6
1,864.6550
83
B
6
1,975.5332
#
Tone
Octave
Frequency (Hz)
84
C
7
2,093.0045
85
C#
7
2,217.4610
86
D
7
2,349.3181
87
D#
7
2,489.0159
88
E
7
2,637.0205
89
F
7
2,793.8259
90
F#
7
2,959.9554
91
G
7
3,135.9635
92
G#
7
3,322.4376
93
A
7
3,520.0000
94
A#
7
3,729.3101
95
B
7
3,951.0664

#
Tone
Octave
Frequency (Hz)
96
C
8
4,186.0090
97
C#
8
4,434.9221
98
D
8
4,698.6363
99
D#
8
4,978.0317
100
E
8
5,274.0409
101
F
8
5,587.6517
102
F#
8
5,919.9108
103
G
8
6,271.9270
104
G#
8
6,644.8752
105
A
8
7,040.0000
106
A#
8
7,458.6202
107
B
8
7,902.1328
#
Tone
Octave
Frequency (Hz)
108
C
9
8,372.0181
109
C#
9
8,869.8442
110
D
9
9,397.2726
111
D#
9
9,956.0635
112
E
9
10,548.0818
113
F
9
11,175.3034
114
F#
9
11,839.8215
115
G
9
12,543.8540
116
G#
9
13,289.7503
117
A
9
14,080.0000
118
A#
9
14,917.2404
119
B
9
15,804.2656
Navigate to the top of this page